IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

Operand-oriented Virtual Memory Support for
Near-Memory Processing

Duheon Choi, Taeyang Jeong, Joonhyeok Yeom, and Eui-Young Chung, Member, IEEE,

Abstract—Virtual memory support is one of the major challenges of near-memory processing (NMP). Many previous works focused
on this issue, but there are practical limitations that conventional CPU hardware or memory allocation schemes should be modified.
Another technique uses a specialized page table for NMP to avoid such limitations. However, the previous work proposed NMP-specific
page table that has static page table walk latency regardless of data size. This causes unnecessarily long address translation time for
relatively small data. In this paper, we propose an operand-oriented technique for virtual memory support. Our scheme does not
pre-determine the size of shared space; rather, it allocates shared space depending on the size of operands data for NMP. Then, we
significantly reduce page table walk latency by using our flexible page table, which adapts the page table hierarchy to the size of shared
spaces. To prove our concept, we implement our scheme in a full-system simulator and an FPGA-based verification platform. We then
compared it with CPU’s page table and the previous NMP-specific page table. The experimental results show that our technique
outperforms page table walk latency by 69.3 percent and 43.8 percent compared to the CPU’s page table and the comparison,

respectively.

Index Terms—Address translation, near-memory processing, page table, processing-in-memory, virtual memory support

1 INTRODUCTION

EAR memory processing (NMP) is a practical memory-
Ncentric computing technique [1], [2]. NMP-based sys-
tems place accelerators near the memory, such as the logic
layer of 3D-stacked DRAM [3]-[10] and the buffer chip in
DIMM module [11]-[15]. These near-memory accelerators
(NMACCs) benefit when operating data-intensive appli-
cations with high memory bandwidth and reduced data
transaction paths. In addition, this memory-centric comput-
ing technique can overcome the limitations of conventional
processor-centric acceleration by eliminating overhead due
to data movement between main memory and accelerator’s
local memory, power consumption due to the accelerator’s
memory, and the limited memory footprint of accelerators.

However, when applying NMACCs to traditional com-
puting systems, there is a challenge in supporting the vir-
tual memory of a host process. In modern systems, CPU
processes run on a virtual memory system, and operating
systems (OSs) map these virtual memories to the physical
address space (PAS) of the main memory into page units and
store page mapping metadata in a page table. This means
that the data are scattered in main memory regardless of
their virtual address (VA). However, because the data to be
operated by NMACCs are indexed on the virtual address
space (VAS), they must resolve the CPU’s virtual-to-physical
page mapping.

Thus, many NMACCs prototyped in real systems only
partially support the virtual memory [6], [11], [15], [16].
They ensure the dedicated PAS by reserving the memory
zone for NMP in the booting sequence or registering their lo-

e D. Choi, T. Jeong,]. Yeom, and E.-Y. Chung are with the School of
Electrical and Electronic Engineering, Yonsei University, Seoul 03722,
Korea.

E-mail: {cdh0527, drthubfg, skhds, eychung}@yonsei.ac.kr

Manuscript received September 15, 2022.

cal memory in the system memory map. Then, the user allo-
cates virtual memory to NMACC-dedicated spaces through
a specific application programming interface (API). This
method enables NMACCs to use their dedicated space as
their local memory without address translation. However, it
cannot be considered to be true memory sharing because the
CPU cannot employ the NMACC-dedicated space for other
uses. In addition, dedicating address spaces means that
NMACC:s still have limited memory footprint and memory
resource inefficiency, because they can only access these
dedicated spaces, which conventional accelerators do. Fur-
thermore, because the workloads accelerated by NMACCs
often require large memory footprints, these limitations will
obstruct NMACCs from fully exploiting their capabilities.

To overcome these limitations, an NMACC needs to
access main memory as the CPU does by resolving the
memory mapping of the OS. However, the largest hurdle in
this process is the infrastructure of the address translation
based on the page table. Duplicating the page table walk in
NMACCs has some challenges, such as page table walking
latency and compatibility for page table structures across
the CPU architectures [2], [3]. Therefore, some previous
works avoid operating page table walk in NMACCs by
using a contiguous range memory allocation method [17]-
[20] or adding hardware modules to the host machine that
performs address translation for NMACC [7], [8], [10]. How-
ever, these methods are difficult to apply in practice because
they require modification of the CPU hardware, such as a
translation look-aside buffer (TLB) and page table walker,
or adding modules.

Meanwhile, IMPICA [3] proposed the region-based page
table (RPT), which enables access to main memory by per-
forming the page table walk in NMACCs. The RPT is an
NMP-specific page table only referenced by NMACCs. It
only stores page mapping metadata for a pre-determined

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

part of the virtual memory shared with NMACCs. There-
fore, these metadata are stored in both the CPU’s page
table and the RPT. Then, the CPU and NMACC can access
NMACC-shared regions through their respective address
translation engines. The RPT solves the compatibility issue
and improves the page table walking latency. In addition,
an NMP-specific page table enables NMACC to support the
virtual memory without modifying the CPU hardware.

However, there remain some issues regarding scalability
and page table walk performance. Because the RPT has a
structure with reduced address space coverage for improv-
ing page table walk performance, there is a limit to the
amount of virtual memory that can be shared. In addition,
the RPT has a static page table walk latency for its maximum
coverage, regardless of the NMACC’s memory footprint
sizes. However, the memory footprints of accelerators have
different shapes depending on the target kernels or different
sizes with different input arguments. Although the RPT
has improved page table walk latency through reduced
hierarchies, the memory footprint diversity of accelerators
remains an opportunity to provide improved page table
walk latency.

In this paper, we propose a virtual memory support
scheme that performs different page table walks according
to the memory footprint shapes of NMACC. To address the
variety of the accelerator’s memory footprints, our scheme
divides the NMACC’s memory footprint by the unit of an
operand. The operand is the data that the accelerator kernel
uses during operation, and NMACC and the CPU should
share the memory in which operands are allocated. Our
scheme uses on-demand shared space declarations per each
operand of NMACC. We then propose a flexible page table
structure that configures different hierarchies corresponding
to the size of shared spaces. We also propose an address
translation hardware module for walking our page table.
As a result, NMACCs can translate the virtual address with
reduced page table walk latency which is different for each
operand.

To evaluate our proposal, we first implemented a sim-
ple NMACC prototype to which our scheme was applied.
We also built a field-programmable gate array (FPGA)-
based NMACC verification platform and implemented an
NMACC prototype that accelerates the kernel of matrix-
vector multiplication to demonstrate that our framework
can provide virtual memory support and performance im-
provements in address translation. In addition, we evalu-
ated our proposal with a full system simulator to see its
effects on the other data-intensive kernels.

The key contributions of this study can be summarized
as follows:

e We propose an operand-oriented virtual memory
support scheme. This enables precise management of
the variety of shapes and sizes of NMACC’s memory
footprint in the virtual memory of the host process.

o We propose a novel NMP-specific page table, which
has a flexible page table structure. This provides
optimal page table walk latency according to the size
of the address space to be covered.

o We verify the effectiveness and functionality of our
proposal on real hardware through an FPGA-based

2
Host process Task offload
CPU core
Virtual =
% =
pages 4 =
Virtual address
space(VAS)
__F; __________ T Page table MMU b === =|-=
Physical address — walker
space(PAS)
NMACC
—3
. 7 =
Physical ’4 = Page
pages 7 = table
Fig. 1. Virtual memory system of computing system
Virtual page number
A
r 1
47 3938 3029 2120 1211
VA | L4 index | L3index | L2index | L1index | Page Offset
rI:
-
" - H—®—>{ PPN
CR3 | !
256TB 512GB ElGB £2MB .4KB i

Memory coverage

Fig. 2. Page table structure of traditional 64-bit architecture

verification platform. And we evaluate the perfor-
mance of our proposal on four kernels in a simula-
tion.

2 BACKGROUND AND MOTIVATION
2.1 Virtual Memory Support

A virtual memory system is an essential part of modern
computing systems. The OS allocates physical pages only
to virtual pages that are actually used, and stores mapping
metadata in the page table. This system enables the CPU
to run multiple processes efficiently on limited memory
resources. Fig. 1 shows how a virtual memory system
operates on the CPU. When a CPU core accesses memory
with a VA, the memory management unit (MMU) converts
the VA to a physical address (PA) through the TLB, which
stores the page mapping metadata. However, when a TLB
miss occurs, the page table walker searches the page table
mapping metadata by accessing the page table in the main
memory.

This system poses a major challenge for NMACCs to
access main memory. Because NMACCs receive a task from
the host process, addresses of the operand data are based on
the VAS. However, the main memory stores the data on PAS,
and the VA-to-PA mapping information is only obtained
through the page table. Thus, for NMACCs to access data in
the main memory, they must be able to support the virtual
memory by resolving the VA-to-PA mapping.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

Virtual page number
L

1

2120 1211 0
| L1index | Page Offset |

r
47 39 38
VA |region tags I

L2 index

Region
Table

fany
<7

4-entries

L J L J
T Y

Large page(2MB) Normal page(4KB)

Fig. 3. Page table structure of the RPT

2.2 Challenges for Page Table Walking in NMACCs

A naive solution for virtual memory support is to duplicate
the CPU’s MMU into the NMACC. However, there are
some issues for implementing CPU’s page table walker in
NMACC [2], [3]. The first is compatibility. The structure
of the page table slightly differs among virtual memory
infrastructures of CPU architectures. If the system has mul-
tiple CPU architectures as hosts, compatibility with the
page table structures of these CPU architectures must be
ensured. However, the near-memory environment does not
have sufficient area to implement them all.

The second issue is address translation performance.
Page table walk latency is one of the important factors in
address translation time. Fig. 2 shows the traditional page
table structure of 64-bit architectures. It stores mapping
information for a 4KB page in an 8-byte entry. Since the page
table also be managed in units of pages, it has a tree-type
hierarchical structure. The 64-bit architecture has a coverage
of 256TB through a 4-level hierarchical page table structure.
It is indexed by a virtual page number (VPN) extracted from
a VA, and the lowest level entries store mapping metadata
including a physical page number (PPN) mapped to the
virtual page number. Thus, the page table walk in the CPU
requires as many pointer-chased memory reads as the levels
of the page table hierarchy. However, data-intensive kernels
accelerated by NMACCs result in many page table walks
due to their large memory footprint, which incurs a large
performance overhead due to page table walk latency [17],
[21]-[24].

2.3 NMP-specific Page Table

To overcome issues for page table walking in NMACC, a
virtual memory support method of using a page table spe-
cially constructed for NMP has been proposed in IMPICA
[3] under the name of RPT. The RPT coexists with CPU’s
page tables and only stores the page mapping metadata for
a shared region which is a pre-determined part of the virtual
memory shared with the NMACC. When the OS updates a
page table due to a page fault in these regions, it stores the
page mapping metadata on both the CPU’s page table and
RPT. The CPU and NMACC then access the PAS of main
memory mapped to the shared region through their respec-
tive address translation units. This method can solve the
compatibility issue for CPU architectures by constructing a
page table independent of the CPU.

Moreover, the RPT improves page table walk latency by
reducing the hierarchy of page table structure. Fig. 3 shows

TABLE 1

VMA size ratio in each kernel's memory footprint

Percentage of memory footprint per operands

Kernel Opdl Opd2 Opd3 Opd4 Opd5 Opdé6
GEMV 9998 0.01 0.01
BS 96.33 3.67
MLP 33.33 33.33 3333 0.01 0.01
BFS 20.51 2.56 2.56 2.56 61.54 10.26
B+tree 19.85 80.13 0.01 0.01 0.01 0.01
TABLE 2
Page table walk count ratio of each operand
Kernel Percentage of page table walks per operands
Opdl Opd2 Opd3 Opd4 Opd5 Opdé6
GEMV 6649 33.25 0.26
BS 99.25 0.75
MLP 22.16 22.16 22.16 33.25 0.28
BFS 2.07 0.61 18.20 55.96 257 20.59
B+tree 17.81 75.51 2.23 2.22 1.11 1.11

the structure of the RPT. It has a two-level hierarchy by
covering only the shared region which has an address space
size of 512GB, and merging the upper hierarchy using large
pages of 2MB size. The RPT then successfully reduces the
page table walk latency with half page table walk procedure,
compared to the 4-level page table of the CPU.

However, the RPT has some issues regarding scalability
and page table walk latency. By reducing address space
coverage, there is a limit to the amount of virtual mem-
ory that the NMACC can share with the host process. In
addition, since the RPT has a single structure and uses pre-
determined shared space, it serves a static page table walk
latency regardless of the memory footprint of NMACC.
However, the memory footprints of NMACC can have
variable sizes and shapes according to the target kernels.
Since the page table walk latency depends on the number
of layers of the page table configured corresponding to the
address space size, there is an opportunity to further reduce
page table walk latency by constructing a page table of an
adequate hierarchy for the NMACC’s memory footprint.

2.4 Splitting Memory Footprint of NMACC

The memory footprints of accelerators show different sizes
and shapes in the target kernels. Considering that the accel-
erator’s memory accesses consist of accesses to the kernel’s
operand data, in the aspect of virtual memory, NMACC’s
memory footprint can be split into virtual memory areas
(VMAs) where each operand is allocated. Table 1 lists the
VMA size ratios for each operand in the total memory
footprint when they operate with a 1GB memory footprint.
Through this table, it can be seen that the shape of the
memory footprint appears according to the operand config-
uration of the kernel and the characteristics of each operand.

Specifically, since operand’s VMAs have contiguous VAs
corresponding to their size, their page mapping metadata
can be managed in individual page tables. However, if they
are managed in a single structured page table like RPT, the
page table’s hierarchy must be constructed according to the
largest operand without considering the various sizes of

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

NMACC

Virtual _ “pagea_ .- age b
address
space VMAXx VMIAY VMA:z
(VAS)
age a age b’ Operand
address
OASx Y,Z spaces
(OAS)
CPU's " "page | NMACC’s :-5‘----; \
"""""" MMU{ table | [~7| nmaty { OPT™ [iOPTvzir===""""""
Physical
address Page
space table @IUs [@
(PAS)

page C page D

Fig. 4. Overview of operand-oriented virtual memory support

47 3938 3029 2120 1211 0
VA [Llindex [L2index | L3index [L4index | Page Offset |
256TB} { VAS
4KB F——————— Type 0
2MBk { Type 1
1GB} 1 Type 2 ~OAS
512GB} | Type 3
256TB} | Type 4

Fig. 5. Configuration of type of OAS

other operands. Table 2 lists page table walk count ratios
that occur in the VMA for each operand in the same environ-
ment as Table 1. Considering that page table walk latency
consumes most of the address translation time, address
translation for the operand that generates many page table
walks takes a large portion of the total address translation
time. Comparing the underlined numbers between Table 1
and Table 2, even relatively small operands can cause a high
rate of page table walks. Thus, reducing page table latency
with a suitable page table for small operands can further
improve the address translation performance.

3 PROPOSED SCHEME
3.1 Overview

In this paper, we propose a virtual memory support scheme
based on our novel NMP-specific page table. Our scheme
aims to reduce page table walk latency by constructing suit-
able page table structures for NMACC’s memory footprint.
To adopt variable sizes and shapes of memory footprint, our
scheme uses on-demand shard area determination and vari-
able page table structures which have different coverage.
As mentioned in Section 2.4, the memory footprint of
NMACC can be divided into operands allocated on each
VMA. These areas are previously allocated and initialized
by the host process through memory allocation APIs such
as malloc or mmap. If the user defines the VMAs of these
operands as shared areas through our API, then our soft-
ware driver copies the page mapping metadata for the VMA
of each operand into our NMP-specific page table called
operand page table (OPT), which has a flexible structure
according to the size of operand data. We also propose
a near-memory address translation unit (nmATU), which
translates the address based on our page table. By using

4
Correct type: Type2 Typel Typel Typel
Indexing with VPN: Type3 Typel1 0 Typel 1 Typel.2
0x1_0000 | (0x8000 0x4000
VAS 0x1000_0000 (256MB§ (64KB) (32KB) (16KB)
Opd1 Opd2 Opd3 Opd4
0x3A00_0000 0x4A00_0000
aligning
OASs

0x0 0x1000_0000

our scheme, NMACCSs can share various amounts of virtual
memory based on reduced page table walk latency.

Fig. 4 shows how our scheme supports virtual mem-
ory for an NMACC that accelerates a kernel with three
operands. In the situation where the host process initializes
operands X, Y, and Z for acceleration, the user defines their
VMAs as shared areas through our API. Then, our software
driver generates OASs by aligning (X and Y) and merging
(Z) these VMAs. When the shared area is fully defined, our
driver constructs an OPT for each OAS and fills the OPT
entries by copying page mapping metadata from the CPU’s
page table. After OPT construction, OPTs store OAS-to-PAS
mapping metadata, and VAS-to-OAS can be converted by
simple address shifting between OA and VA. In NMACC,
nmATU translates the PE’s VA to PA based on OPT. First,
it simply converts VA to OA and translates OA to PA by
performing the OPT walk. In Fig. 4, when CPU accesses
the virtual pages a and b, MMU translates VAs of 4 and b
to PAs of A and B. When NMACC access the same pages,
nmATU first converts VAs of a and b to OAs of 4’ and b/,
then it translates OAs of 4" and b” to PAs of A and B. In
these procedures, since the OPTYy, 7 has fewer hierarchies
than OPTx, nmATU'’s address translation time for b to B is
reduced than a to A.

The remainder of this section describes the elements of
our scheme. Section 3.2 describes the OAS, which is our
logical address space, and Section 3.3 describes the OPT,
which has a flexible structure according to the size of ad-
dress space coverage. Section 3.4 describes the nmATU, the
address translation unit attached to the memory interface
of the NMACC. At last, Section 3.5 describes the software
stacks and design considerations.

3.2 Operand Address Space

In this work, we construct variable page table structures
with different address space coverage sizes as shown in Fig.
5. By default, in a conventional computing system, the page
table stores page mapping metadata in its entries indexed
by VPN. However, as shown in Fig. 6, if our page table
with reduced address space coverage is indexed with VPN,
VMAs can not be able to allocate a suitable type for the
VMA size due to biased VPN values. In the case of Opd1
of Fig. 6, it has a size of 256 MB and has to be declared in
type 2, but when indexing with their VPN, it exceeds the
address space size of type 2. This causes allocating Opd1 in
type 3, resulting in an unnecessarily large page table being
constructed. In addition, in the case of Opd2, Opd3, and
Opd4, generating individual OPT for each smaller operands
incurs resource overhead.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

Algorithm 1 OAS generation

1: procedure OAS_GENERATION(V A, Size)
2: mlock(V A, Size)

3: Npage < calculate_number_of_page(V A, Size)
4: Type < classify_OAStype(Npage)
5: fori =0 —>Npas do
6: if OAS[i].type== T'ype &&
remain pages of OAS[i]>Np,4e then
: create_Operand(V A, Size, ¢,0AS[¢].1astOPN)
8: Add Npa4e to OAS[i].number of pages
9: Done < true
10: break
11: if Done ! = true then
12: create_OAS(T'ype,0)
13: create_Operand(V A, Size,Noag, 0)
14: Noas < Noas +1

To address this issue, we use a logical address space
called the OAS. The OAS is generated by shifting the
operand’s virtual addresses, and operand page numbers
(OPNSs) of the OAS are used for indexing our page table.
For indexing our page table built to the size of the operand’s
VAS, we divide the OAS into five types of different sizes, as
shown in Fig. 5. These sizes are the same as the coverage
of each level of the CPU’s page table because it has the
most granular level configuration in the paging system of
the OS. Our driver then either generates an OAS with a
suitable type according to the size of operands or merges it
into existing OAS. In Fig 5, for Opd1 and Opd2, the driver
generates a suitable type of OAS and their VAs are shifted
to zero-base OA. For Opd2 and Opd3, the driver shifts their
VAs behind of OAS generated for Opd2. This enables the
driver to construct suitable page tables related to the sizes
of the operand’s VMA and reduces memory resource usage
by reducing the number of page tables generated.

3.2.1 OAS Generation

Generating the OAS is the same as defining the VMA to
share with the NMACC. When the user calls the OAS gen-
eration API, our driver manages a list of OASs and shared
VMAs using two types of metadata: OAS and operand
metadata. The OAS metadata consists of type and valid
page numbers, and it is used in the OPT construction. And
the operand metadata consists of a base VA and size of the
operand’s VMA, ID of the allocated OAS, and a base OPN.
It is used to copy the context of the CPU’s page table to fill
the OPT. Algorithm 1 describes our driver’s OAS generation
procedure. Our driver first classifies the type of OAS with
the number of pages of the VMA. Then, if that number of
pages can be inserted into the remaining space of the OAS
of the same type generated earlier (line 6), the driver creates
operand metadata so that the operand’s virtual pages are
inserted into the remaining space of the matched OAS, and
it also adds the number of operand’s pages to the matched
OAS metadata (lines 7-8). Meanwhile, if the existing OAS
has insufficient space for the input operand’s pages, the
driver creates OAS metadata and operand metadata so that
operands are assigned to the new OAS (lines 12-14).

20 1211 0
OA [Llindex [Page Offset |

1211 0
| Page Offset |

L1 index

[77Z] normal page

TBA
-~ _PA |
[1arge page
Type3 38 3029 T ou o
OA[L2index | L1 index

Fig. 7. OPT structures for each OAS type

3.3 Operand Page Table

The page table walk latency is directly related to the number
of levels in the page table hierarchy, and the page table
hierarchy is related to the size of the address space covered.
Because a CPU page table manages page mapping metadata
of numerous processes, it is constructed with only normal
pages (4KB) for resource efficiency. However, for NMACC,
the page table only needs to store page mapping metadata of
the operand’s VMA to be shared. In Section 3.2, our driver
generated the OAS by classifying, aligning, and merging
page numbers depending on the operand’s VMAs sizes.
Then, our driver constructs an OPT with a reduced hierar-
chical structure for each type of these OASs and copies and
stores their page mapping metadata from the host’s page
table.

Fig. 7 describes the OPT structures for each OAS type.
It has four structures (except type 0, which does not require
the page table) according to the coverage of each type. We
further reduced the hierarchy of page table by combining
normal pages and large pages (2MB) for each type of OAS.
In an example of Fig. 6, the page mapping metadata for
Opdl, Opd2, Opd3, and Opd4 is stored in OPT type 1 and
type 2, and page table walk of OPT for these operands
requires only one memory read. In fact, the modern OS
provides huge pages with 1GB, and it is possible to fur-
ther reduce the hierarchy. However, securing huge pages
requires a specific setup, and there is a limit on the number
of huge pages that can be secured. Therefore, we design the
OPT using only normal pages and large pages.

In particular, in the case of type 3, we can choose to
merge the upper levels or the lower levels of the page
table structure. Merging the upper levels configures the
lowest levels with normal pages, so the memory resource
used when the page table allocates an additional page
to store new metadata is minimized. In the case of RPT,

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

{VA‘:/7P'-\ii---VA12} {Vﬁalgle ------ VAO?/,/ I input VPN OAS registers
i 1 offset]| - —{Base VPN K9—((H{ End VPN |: |[Base OPNO | TBAO | OAStype 0] |
TLB miss ; . End VPN |! -+ Base OPN1 | TBA 1 | OAStyped |1 | 4of
TLB [OAS registers | T 5 i operands
@ l . End VPN |i| 1 [Base OPN N-2[TBA N-2[OAS type N-1] !
= A HH i
g OPT Walker ik :
sl . R N I I O I I LA L - e [} [S AP N S — !
2 walker cach Operand ID
I N
Type
PPN I [PN TBA YS
{PA47 PA12} {PAll...... PAO} access OPT | I y y

@

(b)

Fig. 8. Procedure of (a) address translation in nmATU and (b) converting VPN to input values of OPT walker in OAS registers

TABLE 3
MMR configuration

Name [Bits [Description
Base VPN | 36 | Base virtual page number of operand’s VMA
End VPN 36 | Last virtual page number of operand’s VMA
Base OPN | 36 | Base operand page number of operand
TBA 64 | Base physical address of the OPT
Type ID 3 OAS type for operand

which pre-determines the shared area, it merges the upper
levels because it continually stores additional metadata. On
the other hand, the page table which merges the lower
levels requires large pages when adding metadata, but it
has higher data reusability during the page table walk.
Therefore, it can benefit page table walk performance with a
cache. In this work, our scheme takes resource efficiency
by on-demand shared area definition and page mapping
metadata concatenation in OAS generation. For this reason,
we merge the lower levels of the page table hierarchy to
enhance the synergy with the walker cache.

As a result, the OPT can cover all address space with a
hierarchical structure of zero to two levels, which requires
less than half the number of memory accesses than the
CPU'’s 4-level page table in the page table walk. Compared
to RPT, OPT requires the same or fewer memory accesses
than RPT with two levels. In addition, the OPT can cover the
address space of 256TB by type 4, which is the maximum
size used in the modern system, so it can overcome the
limitation on the amount of virtual memory the RPT can
cover.

3.3.1 Page Table Walk for OPT

As shown in Fig. 7, each type of OPT has different address
space coverage and hierarchy configuration. Thus, it is dif-
ferent to index the OPT by the OPN’s valid index bit length
and index bit configuration for each level. To index page
table entries of 8 bytes, a normal page requires 9 index bits,
and a large page requires 18 bits. Therefore, for a correct
page table walk according to OAS type, the OPT walker
needs an additional input called OAS type to know the OAS

type in addition to the input OPN and table base address
(TBA).

3.3.2 OPT Construction

Through OAS generation, the driver has metadata about
both the operand and OAS. When the OPT construction API
is called, the driver constructs the OPT through the OAS
metadata and fills it by copying the host’s page table entries
based on the Operand metadata. After OPT construction,
the driver stores the information for OPT walking in the
NMACC’s memory-mapped register (MMR) as described
in Table 3. A set of MMR consists of five registers and has
a total size of 175 bits. To apply our scheme, our address
translation unit embedded in NMACCs needs to have as
many MMR sets as there are operands, and this number is
determined when designing the NMACC.

3.4 Near-memory Address Translation Unit

Since OPT is a customized page table for NMP, we propose
the nmATU for address translation using OPT. NMACCs
can access the virtual memory of the host process regardless
of CPU architecture through embedding our nmATU. Fig.
8a shows the design of our nmATU. Similar to the CPU’s
MMU, it translates a VA into a PA by converting the VPN
to the PPN. If a TLB miss occurs, the nmATU obtains PPN
through OPT walking. However, the OPT walker requires
three inputs as mentioned in Section 3.3: OPN, TBA, and
OAS type. Therefore, the nmATU has OAS registers module
that outputs the information needed by the OPT walker.

The OAS registers outputs the input values of the OPT
walker based on VPN. The OAS registers holds the values
stored as MMRs in the driver. This module identifies the
operand to which Input VPN belongs and outputs the OAS
information. Fig. 8b shows the procedure of OAS registers.
This process takes one cycle and is hidden because it runs in
parallel with TLB searching. First, it compares Input VPN to
Base VPN and End VPN, looking for the operand to which
the Input VPN belongs. Then, it outputs Base OPN, TBA,
and OAS type based on this operand ID. It simultaneously
calculates the offset page number of operand’s VMA by
subtracting Base VPN from Input VPN. Finally, the OPN
is calculated by adding the offset page number and Base
OPN.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

int *A, *B;

A = (int *)malloc(size_A);
B = (int *)malloc(size_B);
Initialize A and B
OAS_generate(A, size_A);
OAS_generate(B, size_B);
OPT_construct();
run_NMP();

OPT_free();

Fig. 9. Example of user code for constructing OPT

3.4.1 Walker cache

Since the page table has a tree-type structure with high data
reusability, it can benefit from cache memory. Therefore,
many existing CPU architectures use a walker cache (WC)
[25]. The upper layer page table entries cover a wide address
space, and in the page table walk that occurs by accessing
this space, these entries are reused. Therefore, the WC can
reduce the page table walk latency by a large number of
cache hits for the entries in the upper level of the page table.
Since the OPT has fewer levels than the CPU’s page table,
the effect of reducing page table walk latency due to WC
is less than that for the CPU. However, because the OPT
uses much fewer entries in the WC during the page table
walk procedure, it has high capacity efficiency. Therefore,
the OPT walker can be expected to have a good effect on
the WC with an even smaller capacity than the CPU’s page
table or RPT.

3.5 Software Stack and Design Consideration
3.5.1 Software Driver and AP/

The software stack of our scheme must be run on the
OS-level. Therefore, we implement our driver as a device
driver in Linux 4.9.0. There are three APIs for employ-
ing our scheme: OAS_generate, OPT_construct, and
OPT_free. OAS_generate and OPT_construct are used
for constructing the OPT and transferring information of
the OPT to nmATU in the NMACC. OPT_free clears all
metadata of OAS and operand and deletes OPTs.

However, there are conditions when calling APIs to suc-
cessfully construct an OPT. Fig. 9 shows an example of using
our API when sharing operands A and B with NMACC.
First, since the driver creates the OAS using the operand’s
VMA, OAS_generate must be called after the operand
is allocated in virtual memory through memory allocation
APIs such as malloc or mmap. Second, OPT_construct
must be called after the data initialization. The driver copies
the page mapping metadata in the CPU’s page table when
filling in the OPT, but the page table entries for A and B
are empty before data initialization because the OS does not
map the physical page until the data is actually written.

In the case of run_NMP, when offloading the task to
NMACC, a host process only needs to send the base VA
of operand data to NMACC for memory sharing because
NMACC can operate on the same VAS as the host process
through the nmATU.

3.5.2 Coherency for Page Mapping Metadata

When the host constructs OPTs, our driver copies page
mapping metadata from the CPU’s page table, so the OPT
stores the latest data. However, there is a coherency issue
in two situations for page mapping metadata during the
acceleration. The first situation is data coherency between
the CPU’s and NMACC’s TLBs. NMACCs do not update
TLB data because it only performs tasks offloaded from
the CPU, but the CPU can update TLB data. The second
situation is metadata coherency between the CPU’s page
table and the OPT. The OPT stores copies of the CPU’s
page table entries. However, if the CPU updates the page
table entries that are copied to the OPT, then the OPT
has outdated page mapping metadata. These issues occur
when the CPU modifies the page mapping of the operand’s
virtual pages, such as selecting the victim page during the
swap operation. Therefore, we use the system call mlock
for memory protection. This system call prevents the map-
ping metadata of pages from being updated in a specific
VMA. We insert this into the OAS_generate API to protect
the page mapping of VMAs of operands shared with the
NMACC.

4 EVALUATION

In this section, we present the evaluation methodology
and experimental results of the proposed address trans-
lation scheme. To evaluate our scheme, we first designed
a simple NMACC prototype that applied our scheme. We
verified our scheme’s functionality and performance effec-
tiveness on a real system by demonstrating it on an FPGA-
based NMACC verification platform. Then, to evaluate our
scheme in more kernels and detailed architectural studies,
we implemented it in a simulation environment.

4.1 Architecture of NMACC Prototype

Fig. 10a shows the structure of the NMACC prototype. It
consists of simple external interface modules and process-
ing logic. The host interface module communicates with
our driver of the CPU through memory-mapped I/0. It
receives scalar arguments of the kernel and OPT information
described in Section 3.3. The memory interface module
accesses the memory through address translation by our
nmATU. For comparison with other page table structures,
we also implemented both the CPU’s 4-level page table
(L4PT) walker and RPT walker as page table walkers in the
nmATU.

The processing element is an application-specific pro-
cessing logic for the target kernel. It operates based on the
host’s VA and has a data buffer of 64 bytes for each operand.
The design of the memory interface module is not closely
related to the design of the processing logic because it sends
memory transactions to the memory with the same interface
as other external IPs. Therefore, the performance of the
processing element can be applied to various acceleration
methodologies, such as parallelization by many processing
elements (PEs) and data buffer optimization. In this work,
we implemented NMACCs with a single PE optimized for
memory operation and minimal data buffer.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

NMACC prototype 7CU102
| PE |
scalar @
argument g + §
cPU 5155
Host |—plnmATU (Cortex-A53) < §
/F |2 -
"]S Mer%w I/F FPGA |ffmmm
To/From To/From
CPU Memory

8
KCU1300
A 4 — g =
o
NMACd |L 2 |
=
<
A 3 E & 7
Q
=
FPGA

(@)

Fig. 10. (a) Architecture of NMACC prototype (b) FPGA-based verification platform

Otype0 Otypel [MEtype2 Mtype3 ¥ltyped

Opd2 1.53 0.78 0.26 0.20 0.01
Opd1 1.53 0.78 33.25 49.90 49.95
Opdo 96.94 98.44 66.49 49.90 . 49.95

128MB 512MB 1GB 2GB 4GB

Fig. 11. OAS type allocation and TLB miss count ratio of each operand
in NMP with GEMV kernel

4.2 Demonstration on the FPGA-based System

We built an FPGA-based NMACC verification platform con-
sisting of a host board (Xilinx Zynq ZCU102) and memory
board (Xilinx Kintex KCU1500). Many 3D-stacked DRAM-
based NMACC systems have the CPU, NMACC’s logic area,
and DRAM on the same board. However, due to the limita-
tions of the size of memory connected to the FPGA which
implements the NMACC logic, we built an environment in
which the CPU and memory are different boards similar
to the DIMM-based NMACC system. Fig. 10b shows our
platform. We disabled the SODIMM slots of the host board
and set the address space of its FPGA as the main memory
space by modifying the first and second bootloaders and
the device tree. Then, we connected FPGAs between the
host board and memory board through a Xilinx Aurora
64B66B link to pass the CPU’s main memory accesses. As a
result, the host board’s CPU recognized the memory board’s
DRAM as the main memory.

In this platform, we loaded our software stack into Linux
kernel 4.9.0 and implemented a processing logic for the
kernel of GEMV [26] as the PE of the NMACC prototype,
which was programmed in the memory board’s FPGA with
a clock frequency of 200Mhz. As shown in Table 5, GEMV
is a matrix-vector multiplication application that has three
operands and a sequential access pattern. To see the effect of
page table structure clearly, we implemented the NMACCs
both without the WC and with a 256B size WC in the
nmATU. We then experimented by increasing the memory
footprint of NMACCs with 128MB, 512MB, 1GB, 2GB, and
4GB by scaling the size of the input matrix and vectors.

As shown in Fig. 11, in most experiments, more than

OL4-w/oWC B RPT-w/oWC W OPT-w/oWC
014-256B ERPT-256B T OPT-256B
~x __ 8
ERN -
[S)
w38]]]
o~
T3
%88 B
M (O
128MB 512MB 1GB 2GB 4GB
Fig. 12. Average page table walk latency of NMACCs
0OL4-w/oWC ORPT-w/oWC W OPT-w/oWC
9 OL4-256B D RPT-256B 2 OPT-256B
a8 N= = =
S -— = -
® 7 = = =
a6 = = =
» N = = =
5 HN= =T IN= :
. = : = = H
128MB 512MB 1GB 2GB 4GB

Fig. 13. NMACC Speedup with different page table, normalized to CPU-
only

half of TLB misses occur in OAS type 1 and type 2, and they
perform page table walk with only a quarter of the memory
reads compared to L4PT and half compared to RPT. Fig.
12 shows average page table walk latency during NMP. In
the NMACC without WC, the OPT reduced page table walk
latency by 65.1 percent and 32.6 percent compared to 4LPT
and RPT, respectively. In NMACC with WC, page table walk
performance for all page tables was significantly improved
due to WC. The OPT reduced page table walk latency by
92.1 percent and 18.7 percent compared to 4LPT and RPT,
respectively.

Fig. 13 shows the performance improvement of NMACC
when compared to CPU-only computation. This perfor-
mance is measured in terms of overall execution time, which
includes both computation time and address translation
time. By improving computation time through effective
memory bandwidth utilization using hardware acceleration,
all NMACCs achieved at least 4.89x speedup over CPU-only
computation. Meanwhile, the variations seen in the results
are attributed to the address translation time, specifically the
page table walk latency, which is the main focus of this pa-

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

TABLE 4
Simulation platform configuration

4 Out-of-Order core, 2GHz,

Py ARMVS ISA, L4 page table
DDR4_2400_16x4,
Memory 8 GB, 1 channel,
2 ranks, 16 bank each rank,

FR-FCFS scheduling

(03] Linux kernel 4.9.0
trace-driven model for PE, 500Mhz,
32-entry TLB, 256B WC with LRU,

OPT walker, LAPT walker, RPT walker

NMACC

TABLE 5
Kernels used in our evaluation

Benchmark l # of operand Domain Access pattern
GEMV [26] 3 Linear algebra seq
BS [26] 2 Data analytics seq, rand
MLP [26] 5 Neural network seq
BFS [27] 6 Graph algorithms seq, rand
B+tree [27] 6 Searching seq, rand

per. In NMACCs without the WC, the OPT improved overall
performance by 37.8 percent and 10.3 percent compared to
4LPT and RPT, respectively. When WC was applied, the
overhead of the page table walk was almost eliminated in
overall performance when using the RPT and the OPT. The
OPT improved overall performance by 32.6 percent and 0.6
percent compared to 4LPT and RPT, respectively.

Through verification in real hardware, we confirmed that
our scheme successfully provided the ability to support the
virtual memory of the host process to the NMACC. These
results show that NMP-specific page tables can provide high
performance to kernels with sequential access patterns by
adding WCs because these patterns had a high hit rate in the
TLB and the walker cache. However, since it was difficult
to see the effect of page table walk latency on sequential
patterns, we further evaluated our scheme on kernels with
random access patterns through simulation.

4.3 Simulation Methodology
4.3.1 Simulation Setup

To evaluate our scheme in simulation, we implemented the
NMACC prototype in the gem5 full-system simulator [28]
and loaded our software stack in the Linux kernel 4.9.0.
Table 4 describes the configuration of simulation platform.
We built a system with an ARMv8-based CPU that uses a
4-level page table (L4PT). We implemented the NMACC’s
PE as a trace-driven model. We extracted virtual memory
traces on VMAs of the target kernel’s operands using Pin
[29]. Then, during simulation, we converted this virtual
memory trace to gem5’s VAS by shifting the trace’s ad-
dresses into each operand’s VMA of the benchmarks run
on the gemb system. In our trace-driven model, we assumed
that the NMACC’s PEs computing operations are hidden by
memory operations. We can make such an assumption be-
cause the kernels we implemented in PE are data-intensive
kernels with memory-bound performance. To evaluate the
performance of our page table, we implemented the L4PT

9
O type 0 type 1 type2 MW type3 Pltyped
Opd5 20.6 20.6 20.6/20.4(1.2 1.1 1.1 1.0
Opd4 06 03 01 01|26 26 12 11 11 1.0
Opd3 19.9 33.2 49.9 49.9(56.1 56.0 55.9 56.4(2.4 22 2.1 2.1
Opd2 26.5 22.2 16.6 [l 18.1 18.2 [18.3 17.9]| 2.4 22 21 21
Opd1|0.8 0.7 0.7 0.7 |26.522.2 16.6 [3.1 (3.0 29 3.1 (733 755
Opdo [99.2 99.3 993|993 26.522.2 16.6 A 2.1 (2.1 (21 19.4 17.8 17.0 165
W2 ® (F PR PR P @e‘b e‘?’ od
WA,) [VAN I v \ P m
s Vs R VT S §+tr
OL4PT-w/oWC MmRPT-w/oWC mOPT-w/oWC
450,
300

=
w
o

o

®
@l\ xcs‘é ’L(’)% ey RO NSKCIRNCING,

B+tree

Page table walk latency(ns)

Fig. 14. (a) OAS type allocation and TLB miss count ratio for each
operand, (b) average page table walk latency without WC

walker and RPT walker in nmATU as a comparison group.
The L4PT walker received the table base register (TTBR)
value from the CPU and directly accessed the CPU’s page
table directly from the main memory. We used Cacti [30]
to estimate the energy consumption of WC for the 90nm
process technology.

4.3.2 Kernels of NMACC

To evaluate our proposal, we implemented four kernels of
data-intensive benchmarks from the PrIM [26] and Rodinia
[27] benchmark suites. Table 5 describes the features of these
kernels. MLP, which operates a three-layered multi-layer
perception, has a strong sequential access pattern similar
to GEMV. On the contrary, BS, which operates a binary
search algorithm, and BFS, which operates a breadth-first
search algorithm, have a strong random access pattern.
B+tree has mixed access patterns. We scaled up the memory
footprint of kernels by using input argument adjustments
and input data generators provided by each benchmark, and
we evaluated our proposal on these kernels with memory
footprints of 512MB, 1GB, 2GB, and 4GB.

4.4 Impact of the OPT

Our scheme aims to construct appropriate page tables for
each operand to reduce page table walk latency of the
NMACC. Fig. 14a shows which OAS types our driver has
assigned to each operand. Even in cases where the total
memory footprint exceeds 1GB, our scheme allocates type
1 and type 2 to most operands, reducing page table hi-
erarchies. In addition, the number in the box of Fig. 14a
shows the percentage of TLB miss counts for each operand.
In the case of BS, the largest operand caused most TLB
misses. Most of the page table walk time in this kernel was
spent by the page table structure of the largest operand.
However, in BFS, large operands caused only small TLB
misses. The proportion of page table walk operations due
to large operands in the total page table walk time was

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

OLAPT-256B ERPT-256B EOPT-256B

10

O L4PT-256B m RPT-256B M OPT-256B

450

Average page table walk
Iateﬂcy (ns‘L

©
C&\\“ NSRRING,
B+tree

=
o

~
w

w
o

N
w

Ll

\J o
A 1 @
B+tree

il | |

®
@k AP P mc&
BS

o

Walker cache hit rate (%)

Fig. 15. (a) Page table walk latency with 256 bytes WC, (b) walker cache hit rate

small. From this figure, it can be seen that the correlation
between operand size and TLB miss count is weak, and their
relationship is determined by the operational characteristics
of the kernel.

To see the effect of page table hierarchy, we implemented
the nmATU, which had a 64 bytes buffer instead of the WC.
Fig. 14b shows average page table walk latency without the
WC. In the memory footprint of 1GB or less, OPTs were
built as a single level, type 1 and type 2, and it significantly
reduced page table walk latency. The largest improvement
was in 512MB of MLP, which reduced page table walk
latency by 89.1 percent compared to L4PT and 72.5 percent
compared to RPT. In this case, the OPT improved the page
table walk latency over the memory access ratio decreased
by hierarchy reduction. This is because the page mapping
metadata was more densely stored in OPT due to OAS
merging, and a buffer hit occurred in the 64-byte buffer due
to the increased spatial locality. However, in the memory
footprint of 2GB or more, the latency improvement de-
creased as OPT allocates type 3 with two hierarchies to some
operands. In the case of BS, most of the page table walks
occurred in type 3 OPT, and the page table walk latency
was similar to that of RPT which had 2 levels hierarchy. In
contrast, in the case of BFS, since most page table walks
occurred due to access to small operands, OPT provided
significantly reduced latency on all of the memory footprints
by constructing small page tables for the small operands. As
a result, our OPT reduces page table walk latency by 72.8
percent compared to the L4PT and 44.5 percent compared
to the RPT in overall kernels.

4.5 Synergy with Walker Cache
4.5.1 Page Table Walk Latency

Since accessing the page table that has a hierarchical struc-
ture has high data reusability, WC can significantly improve
the page table walk performance. Fig. 15a shows average
page table walk latency with WC of 256B. And Fig. 15b
shows the hit rate of WC. The WC improved page table
walk latency by 50.2 percent in L4PT, 44.6 percent in RPT,
and 43.8 percent in OPT than the case without the WC.

In the cases of kernel BS, BFS, and B+tree, WC reduced
L4PT’s page table walk latency by more than half. This is
because the WC filters memory accesses to the upper-level
entries of the page table. A single WC block that stores
upper-level entries can cover 4TB (L4) and 8GB (L3) of
address space, respectively. Therefore, in Fig. 15b, the WC
hit rate for L4PT is shown mostly over 50 percent in BS, BFS,

and B+tree. However, the RPT already eliminates upper
levels, it cannot take the effect of WC as in L4PT. It improved
latency by only 21 percent compared to L4PT in BS, BES,
and B+tree. On the other hand, our OPT reduced page table
walk latency by eliminating more levels by using type 1
and type 2 of OPT. Furthermore, in 2GB and 4GB of BS
and B+tree, WC significantly reduces OPT’s page table walk
latency. This is because, unlike RPT, the 2-level hierarchical
structures of OPT (type 3 and type 4) merge the lower layers
to increase data reusability in the page table walk. The L2
entry of RPT has coverage of 2MB, but the L2 entry of OPT
has coverage of 1GB. This can also be seen in the WC hit
rate of Fig. 15b, and in these cases OPT had a cache hit rate
as high as L4PT.

On the contrary, MLP shows a different aspect. The OPT
and the RPT significantly reduced page table walk latency
while exhibiting high WC hit rates. This is because memory
accesses of page table walks had high data reusability due
to the sequential access pattern of MLP. However, L4PT has
a lower WC hit rate in MLP than RPT and OPT. Since the
L4PT had to use four cache blocks for every page table walk,
WC suffered from cache pollution due to a page table walk
through each operand. Besides, MLP operated on multiple
operands at the same time, and page table walk operations
for multiple operands occurred in a cross. Thus, these page
table walks evicted the WC data which was upper-level
entries of other operand’s page table walks.

In summary, the OPT used WC efficiently through a
reduced hierarchy, and even in a situation where a two-level
hierarchy had to be used, it took more effects of WC than
RPT through a WC-friendly structure. As a result, the OPT
reduced page table walk latency by 69.3 percent compared
to L4PT and 43.8 percent compared to RPT.

4.5.2 Walker Cache Size Efficiency

Reducing the levels of the page table structure decreased
not only the page table walk latency but also the number
of WC blocks required during a page table walk. Therefore,
we evaluated the WC size efficiency of our scheme. Fig. 16
shows average page table walk latency at different WC sizes
in NMP with a memory footprint of 2GB. In this figure, WC
with OPT shows the saturated effect at a smaller size than
those of RPT and L4PT. Other page tables must be cached
at least as many as their number of hierarchies because the
cache was polluted by memory reads for higher levels, but
single-level hierarchy page tables enabled more efficient use
of WC. Even in the case of BFS, it can be seen that the
latency improvement is maintained even with a 64-byte WC.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

== L4PT

N
v
o

== RPT

11

=O—0PT

300 \

SN

[y
v
o

N

Page table walk latency (ns)

CoZR T <] X QX ¥ ®
& & $ £ L E|S

3 \9]90

Fig. 16. Page table walk latency with different WC size

L4PT M Leakage E @ Dynamic E
1 [——RPTopr & Y

>

20.75

c

Q

8 0.5

N

“©

E .

£

<)

Z 0

)

Fig. 17. Normalized energy consumption of the WC

This is because most TLB misses of BFS were incurred by
accessing small operands that were managed by single-level
page tables, which required only one memory read during
the page table walk process.

In summary, the OPT reduced WC size requirements
by more than half compared to L4PT. This means that
NMACC can have virtual memory support ability with less
hardware resources by using our OPT. This can provide
many opportunities for NMACCs using many PEs in near-
memory environments with small area constraints.

4.5.3 Walker Cache Energy Efficiency

Fig. 17 shows the energy consumption of WC. The energy of
WC is divided into dynamic energy and leakage energy. The
dynamic energy of WC is related to the number referenced
to WC. Because the OPT has a reduced hierarchy than other
page tables, it does a page table walk with fewer memory
accesses that reference the WC. As a result, the OPT reduced
dynamic energy consumption of the WC by 68.6 percent and
37.2 percent compared to the L4PT and RPT, respectively.
The leakage energy is related to computation time, and
OPT improved NMACC execution time by improving page
table walk latency. Therefore, leakage energy of the WC
was improved by 36.8 percent and 24.9 percent compared
to L4PT and RPT, respectively. In the case of MLP with a
sequential access pattern, since the TLB miss rate was low,
the number of WC references was relatively small, and the
WC energy consumption was dominant in leakage energy.
However, in other kernels with random access patterns, the
consumption rate of WC’s dynamic energy was high in
WC’s energy. As a result, OPT reduced energy consumption
of the WC by 41 percent and 25.1 percent compared to L4PT
and RPT, respectively.

éﬁ

B TLB search @Page table walk

Normalized address
translation time

\J
RO NN
B+tree

S ® ®
QN @ZS’L@ e 6@‘\ X:ZL;& u@a‘%@\“\ xe;F ;e% P

Fig. 18. Normalized address translation time

Through Sections 4.5.2 and 4.5.3, reducing the levels of
a hierarchy of the page table structure decreased the WC
access count of the page table walker, which improved
the efficiency of WC size as well as energy efficiency. Our
OPT effectively reduced the number of WC accesses, thus
indicating high synergy with WC.

4.6 Address Translation Time

Address translation time consists of TLB searching and page
table walk latency. Since the TLB searching time is the same
regardless of the page table structure, our scheme’s address
translation performance improvement is affected by the
occurrence rate of page table walks caused by TLB misses.
Considering the page table walk latency is significantly
longer than TLB searching, even a small percentage of TLB
misses can have a significant impact on address translation
time. Fig. 18 shows a breakdown of address translation time
normalized by L4PT. In the case of MLP and B+tree, the
TLB hit rate was more than 95 percent, and most address
translation was completed only with the TLB of nmATU.
Therefore, the ratio of TLB search in address translation time
was high. However, in the case of BS and BFS with strong
random access patterns, most of the address translation time
was consumed by page table walk latency.

In summary, the OPT effectively improved address
translation performance for these kernels with strong ran-
dom access patterns. The OPT reduced address translation
time by 49.1 percent and 32.3 percent compared to the L4PT
and RPT, respectively.

4.7 Total Performance
4.7.1 NMACC Performance

We evaluate the impact of our scheme on NMACC'’s total
execution time. Fig. 19 shows improvement of NMACC ex-

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

OL4PT-256B @MRPT-256B WM OPT-256B

® ® © ®
s\N NSNS, s@h AP AR (S %@@ NN C NG s\N RSINCING
BS MLP BFS B+tree

Fig. 19. NMACC performance improvement by page table structure,
normalized by L4APT

OL4PT-256B @ RPT-256B M OPT-256B

[N

©
N
ol

o
N
g

Normalized Energy
o
w

o

® ® ® ®
B N O I A PN O IO IR IR
BS MLP BFS B+tree

Fig. 20. Normalized energy consumption of main memory

ecution time normalized on L4PT-based NMACC. OPT sig-
nificantly improved performance for kernels with random
access patterns that cause many TLB misses. The condition
for OPT to work best is when a kernel has a random access
pattern that incurs a large number of TLB misses and when
these TLB misses are incurred by a relatively small operand.
In our evaluation, the BFS kernel represented that case.
For BFS, OPT improved NMACC performance by 2.06x
compared to L4PT and 1.79x compared to OPT. However, in
kernels with sequential access patterns, address translation
time did not account for much of the total execution time
because it had a high TLB hit rate and WC hit rate. In
MLP, OPT improves NMACC performance by 16 percent
compared to L4PT and 0.2 percent compared to RPT. As
a result, the OPT improves NMACC performance by 1.65x
compared to L4PT and 1.39x compared to RPT in overall
kernels.

4.7.2 Energy Consumption of Main Memory

Fig. 20 shows the energy consumption of the memory
system normalized by the case of using the L4PT. In terms
of power, the OPT increased the power of main memory
by 8.76 percent and 5.1 percent compared to the L4PT and
RPT, respectively. This is because OPT reduced the address
translation time, thereby increasing the throughput of the
memory. However, the reduced execution time through this
decreased the total energy consumption. Furthermore, OPT
reduced the number of memory reads due to the page table
walk, which also reduced the energy of the main memory.
As a result, OPT reduced the energy consumption of main
memory by 31.6 percent and 21.5 percent compared to the
L4PT and RPT, respectively.

12

4.8 Overhead

Our scheme incurs overheads in two aspects on the host
CPU. First, there is a memory resource overhead consumed
by the OPT. The page table stores mapping metadata for
a 4KB page in an 8-byte entry. In addition, since the OPT
has a hierarchical structure of up to 2 levels, it consumes
less than 1 percent of memory resources compared to the
memory footprint of NMACCs. However, in the worst case,
when an operand’s size is the low boundary in coverage of
type 1 and type 2 of OAS, the OPT consumes the memory
resource almost equal to the size of the operand’s size
because page tables are allocated in page units. In this case,
the memory resource overhead that occurs is 2MB or less,
and this overhead is also minimized by merging address
spaces in the OAS generation process.

The second overhead is OPT construction time. The most
time required in the process of OPT generation is the time
to fill the OPT by copying the page mapping metadata for
the VMA of operands from the CPU’s page table. However,
this operation also takes a very short time compared to
the total operation time of the NMACC because bulk page
table walks for contiguous VAS have high data locality,
and this operation is mostly processed in cache hits. In our
evaluation, in kernels except for MLP, the OPT construction
took less than 0.2 percent of the NMACC operation time.
However, since MLP performed high-throughput process-
ing, the OPT construction took an average of 2.2 percent of
the NMACC execution time. Compared to the RPT, the OS
updates both the page table and the RPT when a page fault
occurs in the shared regions. It has been reported that this
takes a small amount of time compared to page fault latency.
And since OPT is initialized in bulk, it has a small overall
latency compared to the RPT updated by a single entry.

5 RELATED WORKS

There are various methods for supporting virtual memory
when sharing memory between the NMACC and CPU.
Some prior NMACC has assumed that contiguous VASs
are allocated to contiguous PASs with modification to the
OS’s memory allocator [31] [32]. This method enables the
NMACC to perform address translation without a page
table walk. However, contiguous PA allocation can worsen
memory fragmentation, and if memory fragmentation is
severe, contiguous range allocation can fail. These problems
have been addressed through new virtual memory alloca-
tion methods that use segment allocation [18], [19], [20].
They replace the existing page-based memory allocation
and allocate VMAs generated by the host process to a
contiguous PAS. However, these methods are difficult to
apply in existing computing systems because they require
significant modifications to the host machines, such as TLB
and page table walker. In addition, since these methods are
not completely free from the memory fragmentation issue,
they use segment-page hybrid allocation [19], [20]. In such
an environment, NMACC should also need to be capable of
page table walks.

Some NMACCs support virtual memory by adding
hardware modules next to the MMU or cache of the host
CPU [10], [14]. These hardware modules automatically
translate the PA of the data they operate on when the

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

NMACC is running. This enables the NMACC to take more
features, such as cache coherency, in addition to virtual
memory support, but it is difficult to apply to the exist-
ing system because it requires modification of the CPU
hardware. In addition, since they use the CPU’s MMU, the
operand data size of the NMACC command is limited to
the page size. This means that in operating the NMP kernel,
command streams must be continuously sent to the CPU
to NMACC in page units. This requires additional off-chip
traffic and CPU resource for managing the NMP command
stream.

Some NMACCs perform address translation using their
own TLB but do not perform a page table walk [5], [33],
[34]. When an NMACC’s TLB miss occurs, it sends an
interrupt to the CPU so that the CPU fills the NMACC’s
TLB. This method can provide virtual memory support to
NMACCs without modifying the page table or hardware of
the CPU. However, this can cause significant off-chip traffic
and latency to handle the NMACC’s TLB misses.

6 CONCLUSION

In this paper, we proposed a virtual memory support
scheme with OPT to reduce the page table hierarchy. The
key idea is to separate each operand’s VMA of the kernel
and to construct an appropriate page table structure accord-
ing to their sizes. For this, we proposed a software stack that
separates VMA and constructs an OPT. We then proposed a
hardware module that conducts page table walks based on
the OPT in an NMACC. We modularized our framework to
apply to NMACCs and support the virtual memory system.
Then, we demonstrated our proposed scheme in an FPGA-
based verification platform and evaluated it in a full-system
simulator.

Through simulation, our scheme considerably reduced
the page table hierarchies of operands, which is directly
reflected in the page table walk latency. Our OPT improved
page table walk latency by 69.3 percent and 43.8 percent
compared to the CPU’s page table and previous work,
respectively. And our OPT also improved the size efficiency
and energy efficiency of WC. As a result, our proposed
scheme improved the NMACCs performance by 1.65x and
1.39x compared to the L4PT and RPT, respectively.

We expect our scheme to be a practical solution for
memory sharing between NMACCs and CPU. In addition,
we plan to expand our solution to cloud server systems that
manage the memory with tiered page tables. We leave these
components for future work.

ACKNOWLEDGMENTS

This work was supported by Institute of Information com-
munications Technology Planning Evaluation(IITP) grant
funded by the Korea government(MSIT) (No.2022-0-00050,
Development of PIM Computing Architecture based on
Data-Flow), Samsung Research Funding Incubation Center
of Samsung Electronics under Project Number SRFC-1T2002-
01, and the Samsung Electronics Company, Ltd., Hwaseong,
Korea. The EDA tool was supported by the IC Design
Education Center(IDEC), Korea.

13
REFERENCES

[1] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans,
H. Corporaal, and A.-J. Boonstra, “Near-memory computing: Past,
present, and future,” Microprocessors and Microsystems, vol. 71, p.
102868, 2019.

[2] O. Mutly, S. Ghose, J. Gémez-Luna, and R. Ausavarungnirun,
“A modern primer on processing in memory,” arXiv preprint
arXiv:2012.03112, 2020.

[3] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand,
S. Ghose, and O. Mutlu, “Accelerating pointer chasing in 3d-
stacked memory: Challenges, mechanisms, evaluation,” in 2016
IEEE 34th International Conference on Computer Design (ICCD).
IEEE, 2016, pp. 25-32.

[4]]J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,”
in Proceedings of the 42nd Annual International Symposium on Com-
puter Architecture, 2015, pp. 105-117.

[5] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen,
C.-Y. Cher, C. H. Costa, J. Doi, C. Evangelinos et al., “Active
memory cube: A processing-in-memory architecture for exascale
systems,” IBM Journal of Research and Development, vol. 59, no. 2/3,
pp- 17-1, 2015.

[6] M. Gao and C. Kozyrakis, “HRL: Efficient and flexible reconfig-
urable logic for near-data processing,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
leee, 2016, pp. 126-137.

[71 A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh,
K. T. Malladi, H. Zheng, and O. Mutlu, “Lazypim: An efficient
cache coherence mechanism for processing-in-memory,” IEEE
Computer Architecture Letters, vol. 16, no. 1, pp. 46-50, 2016.

[8] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia,
R. Ausavarungnirun, K. Hsieh, N. Hajinazar, K. T. Malladi,
H. Zheng et al., “Conda: Efficient cache coherence support for
near-data accelerators,” in Proceedings of the 46th International Sym-
posium on Computer Architecture, 2019, pp. 629-642.

[9]1 . Jang, J. Heo, Y. Lee, J. Won, S. Kim, S. J. Jung, H. Jang, T. J.
Ham, and J. W. Lee, “Charon: Specialized near-memory processing
architecture for clearing dead objects in memory,” in Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2019, pp. 726-739.

[10] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architec-
ture,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2015, pp. 336-348.

[11] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K.
Wang, T. Roewer, A. McPadden, O. O'Halloran, D. Chen, J. Xiong
et al., “Application-transparent near-memory processing archi-
tecture with memory channel network,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 802-814.

[12] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-
memory processing architecture for embeddings and tensor op-
erations in deep learning,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
740-753.

[13] M. Alian and N. S. Kim, “Netdimm: Low-latency near-memory
network interface architecture,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
699-711.

[14] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H-H. S. Lee et al.,
“Recnmp: Accelerating personalized recommendation with near-
memory processing,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 1EEE, 2020, pp. 790-
803.

[15] L.Ke, X. Zhang, J. So,] .-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho,
J. H. Kim, Y. Kwon et al., “Near-memory processing in action:
Accelerating personalized recommendation with axdimm,” IEEE
Micro, 2021.

[16] C.H. Kim, W.]. Lee, Y. Paik, K. Kwon, S. Y. Kim, I. Park, and S. W.
Kim, “Silent-pim: Realizing the processing-in-memory computing
with standard memory requests,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 2, pp. 251-262, 2021.

[17] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Ef-
ficient virtual memory for big memory servers,” ACM SIGARCH
Computer Architecture News, vol. 41, no. 3, pp. 237-248, 2013.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2023

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

V. Karakostas,]J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Unsal, “Redun-
dant memory mappings for fast access to large memories,” ACM
SIGARCH Computer Architecture News, vol. 43, no. 3S, pp. 66-78,
2015.
J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Range
translations for fast virtual memory,” IEEE Micro, vol. 36, no. 3,
pp. 118-126, 2016.
N. Hajinazar, P. Patel, M. Patel, K. Kanellopoulos, S. Ghose,
R. Ausavarungnirun, G. F. Oliveira,]. Appavoo, V. Seshadri, and
O. Mutlu, “The virtual block interface: A flexible alternative to the
conventional virtual memory framework,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 1050-1063.
S. Srikantaiah and M. Kandemir, “Synergistic tlbs for high perfor-
mance address translation in chip multiprocessors,” in 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, 2010, pp. 313-324.
B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support
for address translation on gpus: Designing memory management
units for cpu/gpus with unified address spaces,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 1, pp. 743-758, 2014.
R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,
C. J. Rossbach, and O. Mutlu, “Mosaic: a gpu memory manager
with application-transparent support for multiple page sizes,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 2017, pp. 136-150.
R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose,]. Gandhi,
A. Jog, C.]J. Rossbach, and O. Mutlu, “Mask: Redesigning the
gpu memory hierarchy to support multi-application concurrency,”
ACM SIGPLAN Notices, vol. 53, no. 2, pp. 503-518, 2018.
T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: skip,
don’t walk (the page table),” in Proceedings of the 37th annual
international symposium on Computer architecture, 2010, pp. 48-59.
J. Gémez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F.
Oliveira, and O. Mutlu, “Benchmarking a new paradigm: An ex-
perimental analysis of a real processing-in-memory architecture,”
arXiv preprint arXiv:2105.03814, 2021.
S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE international symposium on workload
characterization (IISWC). leee, 2009, pp. 44-54.
N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti ef al.,
“The gem5 simulator,” ACM SIGARCH computer architecture news,
vol. 39, no. 2, pp. 1-7, 2011.
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building cus-
tomized program analysis tools with dynamic instrumentation,”
Acm sigplan notices, vol. 40, no. 6, pp. 190-200, 2005.
N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti
6.0: A tool to model large caches,” HP laboratories, vol. 27, p. 28,
2009.
J. Lee, J. Chung, J. H. Ahn, and K. Choi, “Excavating the hidden
parallelism inside dram architectures with buffered compares,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 6, pp. 1793-1806, 2017.
S. E. Yitbarek, T. Yang, R. Das, and T. Austin, “Exploring special-
ized near-memory processing for data intensive operations,” in
2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2016, pp. 1449-1452.
Z. Sura, A. Jacob, T. Chen, B. Rosenburg, O. Sallenave, C. Bertolli,
S. Antao, J. Brunheroto, Y. Park, K. O’Brien et al., “Data access
optimization in a processing-in-memory system,” in Proceedings of
the 12th ACM International Conference on Computing Frontiers, 2015,
. 1-8.
E/E Gao, G. Ayers, and C. Kozyrakis, “Practical near-data process-
ing for in-memory analytics frameworks,” in 2015 International
Conference on Parallel Architecture and Compilation (PACT). IEEE,
2015, pp. 113-124.

14

Duheon Choi received the B.S. degree in elec-
trical and electronic engineering from Yonsei
University, Seoul, Korea, in 2015, where he is
currently working toward the Ph.D. degree in
electrical and electronic engineering. His re-
search interests include system software for
processing-in-memory and system-level design.

Taeyang Jeong received the B.S. degree from
Yonsei University, Seoul, South Korea, in 2017,
where he is currently pursuing the Ph.D. degree
in electrical and electronic engineering. His cur-
rent research interests include hybrid memory
systems and system software for processing-in-
memory.

Joonhyeok Yeom received the M.S. degree in
electrical and electronic engineering from Yonsei
University in Seoul, Korea, in 2019. He is cur-
rently a Ph.D candidate in Yonsei University. His
research interests include NAND flash applica-
tions, near-data processor design and system-
level architecture.

Eui-Young Chung received the B.S. and M.S.
degrees in electronics and computer engineer-
ing from Korea University, Seoul, South Korea, in
1988 and 1990, respectively, and the Ph.D. de-
gree in electrical engineering from Stanford Uni-
versity, Stanford, CA, USA, in 2002. From 1990
to 2005, he was a Principal Engineer with SoC
Research and Development Center, Samsung
Electronics, Yongin, South Korea. He is currently
a Professor with the School of Electrical and
Electronic Engineering, Yonsei University, Seoul.
His current research interests include system architecture and very large
scale integration design, including all aspects of computer-aided design
with the special emphasis on low-power applications and flash memory
applications.

